A STRUCTURE-AFFINITY STUDY OF THE AMINO ACID SIDE-CHAINS IN NEUROTENSIN: N and C TERMINAL DELETIONS AND ALA-SCAN

Jenny A. Henry, David C. Horwell, Kenneth G. Meecham and David C. Rees*

Parke-Davis Neuroscience Research Centre, Addenbrookes Hospital Site, Hills Road, Cambridge CB2 2QB, UK.

(Received 1 June 1992; accepted 4 September 1992)

Abstract: We report a systematic N- and C-terminal deletion and Ala-scan study which quantifies the involvement of each neurotensin amino acid side-chain for the <u>in vitro</u> binding interaction with the neurotensin receptor. The conclusion is that Tyr¹¹ and Leu¹³ are the most important and there appears to be some synergy between the binding interactions of these two side-chains.

Neurotensin (NT) is a tridecapeptide which was first isolated from bovine hypothalamic extracts [1] and has been identified as one of the brain gut peptides. It is widely distributed in the CNS where it appears to act as a neurotransmitter/neuromodulator and in peripheral tissues where it has many of the properties of a hormone/cellular mediator [2-4].

Neurotensin (NT) = pGlu¹-Leu-Tyr-Glu-Asn-Lys-Pro-Arg-Arg-Pro-Tyr-Ile-Leu¹³-OH.

The objective of the present study was to investigate the role that the amino acid side-chains of neurotensin play in the <u>in vitro</u> receptor binding interaction between this peptide and its receptor. Our strategy was to systematically prepare N- and C-terminal deletion peptides to identify the shortest continuous peptide fragment that retains full peptide receptor binding affinity and then to sequentially replace each amino acid within this minimum fragment with a single Ala residue. L-Ala was selected for this "scan study" because its amino acid side-chain is a single methyl group and it is less likely to severely alter the main chain conformation than a Gly-scan. Similar Ala-scans have been performed on other peptides to probe the importance of the amino acid side-chains in the receptor binding interactions of the N-terminus of galanin [5], the neuropeptide-Y derivative NPY (1-4)aca(25-36) [6], human growth hormone [7], interleukin-8 [8], and also to probe the molecular recognition of inhibitory peptides of cAMP-dependent protein kinase [9].

In order to preserve the neutral amide environment found in the backbone of neurotensin we decided that the deletion peptides should be acetylated (for N-terminus deletion) or amidated (C-terminus deletion).

Peptide ^a	NT receptor binding affinity (K _i , M) ^b		
Neurotensin (1-13)	1.7 x 10 ⁻¹⁰	(0.9 - 2.0)	
Ac-Neurotensin (2-13)	1.1×10^{-10}	(0.7 - 1.6)	
Ac-Neurotensin (3-13)	2.1×10^{-10}	(1.8 - 2.3)	
Ac-Neurotensin (4-13)	1.2×10^{-10}	(0.8 - 1.8)	
Ac-Neurotensin (5-13)	1.3×10^{-11}	(1.0 - 2.1)	
Ac-Neurotensin (6-13)	2.4×10^{-11}	(2.3 - 2.5)	
Ac-Neurotensin (7-13)	1.0×10^{-10}	(0.7 - 1.4)	
Ac-Neurotensin (8-13)	1.3×10^{-10}	(1.1 - 1.6)	
Neurotensin (8-13)	1.8×10^{-11}	(1.4 - 3.3)	
Neurotensin (8-12)NH ₂	1.2×10^{-5}	(0.8 - 1.7)	
Neurotensin (8-13)NH ₂	1.0×10^{-8}	(0.8 - 1.1)	

Table 1. Neurotensin receptor binding affinities for N- and C-terminal deletion peptides.

Table 2. Neurotensin receptor binding affinity for the Ala-scan peptides together with the change in binding affinity ($K/1.8 \times 10^{-11}M$) and the change in free energy of binding ($\Delta\Delta G$) for each Ala-scan peptide compared to NT(8-13).

Compound	Structure	Neurotensin receptor binding affinity (K _i , M) ^b	<u>K., M</u> 1.8 x 10 ⁻¹¹ M	ΔΔG ^a
NT(8-13)	Arg ⁸ -Arg ⁹ -Pro ¹⁰ -Tyr ¹¹ -Ile ¹² -Leu ¹³	1.8 x 10 ⁻¹¹ (1.4 - 3.3)	1	0
[Ala ⁸]-NT(8-13)	Ala-Arg-Pro-Tyr-Ile-Leu	2.5 x 10 ⁻¹⁰ (1.5 - 5.0)	14	1.5
[Ala ⁹]-NT(8-13)	Arg-Ala-Pro-Tyr-Ile-Leu	2.1 x 10 ⁻⁹ (0.9 - 6.8)	120	2.8
[Ala ¹⁰]-NT(8-13)	Arg-Arg-Ala-Tyr-Ile-Leu	9.2 x 10 ⁻¹⁰ (0.6 - 1.5)	50	2.3
[Ala ¹¹]-NT(8-13)	Arg-Arg-Pro-Ala-Ile-Leu	1.1 x 10 ⁻⁷ (0.8 - 1.5)	6100	5.1
[Ala ¹²]-NT(8-13)	Arg-Arg-Pro-Tyr-Ala-Leu	4.5 x 10 ⁻⁹ (1.0 - 11)	250	3.2
[Ala ¹³]-NT(8-13)	Arg-Arg-Pro-Tyr-Ile-Ala	2.0 x 10 ⁻⁷ (1.5 - 2.3)	11000	5.4
[Ala ^{11,13}]-NT(8-13)	Arg-Arg-Pro-Ala-Ile-Ala	3.9 x 10 ⁻⁶ (2.5 - 5.8)	220000	7.2

Footnotes : ${}^a\Delta\Delta G = \{\Delta G \text{ (binding)/kCal.mol}^{-1} \text{ for NT (8-13)} - \{\Delta G \text{ (binding)/kCal.mol}^{-1} \text{ for Ala derivative}\}$ $(\Delta G = -RT \text{ In } K_i)$. ${}^b\text{see footnote}^b \text{ table 1}$

^aThe peptides were prepared by solid phase peptide synthesis using Fmoc methodology, and purified to >95% by reverse phase HPLC. Identity was confirmed by amino acid analysis and FAB mass spectrometry.

 $^{^{}b}K_{i}$ represents the concentration producing half-maximal inhibition of specific binding of $[I^{125}]$ -Tyr 3 -NT(1-13) to neurotensin receptors in neonatal mouse whole brain (minus cerebellum). The values given are the geometric mean and the range from at least 3 separate experiments. Non-specific binding was defined with 1 x 10-6M NT (1-13).

In this respect the present study differs from those previously reported for neurotensin [10-13] which have unprotected amino or carboxy groups in the deletion peptides. The results (table 1) show that the hexapeptide C-terminal fragment Ac-NT(8-13) ($K_i = 1.3 \times 10^{-10} M$) retains similar binding affinity to NT (1-13) ($K_i = 1.7 \times 10^{-10} M$) indicating that neither the amino acid side-chains on residues (1-7) nor their amide backbone contributes to receptor binding. If the C-terminal residue of the hexapeptide is amidated or deleted the binding affinity is reduced considerably (77,92000-fold reduction in binding affinity respectively). This is in agreement with other reports that the full in vitro smooth muscle activity of NT resides in the 8-13 fragment [10-13]. Removal of the N-acetyl protecting group to give NT(8-13) improves the binding affinity 7-fold ($K_i = 1.8 \times 10^{-11}$) and this high affinity hexapeptide was used as the starting point for the Ala-scan.

The results of the Ala-scan (table 2) indicate that the i-Pr group of Leu¹³ and the phenolic ring in Tyr¹¹ are particularly important for binding. Deletion of these side-chains decreases the binding affinity by 11000- and 6100-fold respectively. Interestingly the three carbon atoms of the Leu side-chain appear to contribute 5.4 kCal/mol to the free energy of this binding interaction. This is considerably more than the average of approximately 1 kCal/mol/methylene group that has been observed in other molecular recognition phenomena [14,15] and more than is observed when the three carbon atoms are removed from the Ile¹² side-chain (250-fold decrease in binding affinity, 3.2 kCal/mol). An explanation of this discrepancy may be that the Leu¹³ \rightarrow Ala substitution decreases binding interactions of other groups in the molecule (see below).

The basic guanidine side-chains at Arg⁸ and Arg⁹ contribute 14- and 240-fold respectively to the binding. This indicates that they are less important than Tyr¹¹ and Leu¹³.

The binding changes observed for these Ala-scan derivatives may be due to factors other than deletion of a group which is itself directly involved in binding. For example, the increased conformational flexibility of the amide backbone in the $Pro^7 \rightarrow Ala$ peptide may contribute to its decreased binding energy (50-fold, 2.3 kCal/mol).

In the right hand column of table 2 we report the difference between the free energy of the binding interaction for the Ala-scan derivatives versus the free energy of the binding interaction of NT(8-13)($\Delta\Delta G$ values, kCal/mol). The sum of the $\Delta\Delta G$ values for the six Ala-scan peptides in table 2 is 20.3 but the ΔG value for the binding of NT (8-13) itself is only 14.4 kCal/mol. This led to the speculation that the Ala replacements may decrease the binding interactions of more than just the amino acid side-chain which is replaced. This speculation, together with our observation of the unusually high $\Delta\Delta G$ for Leu¹³ \rightarrow Ala led us to replace both the Tyr¹¹ and Leu¹³ in one peptide, [Ala^{11,13}]NT(8-13). The change in the free energy of

the binding interaction of this compound ($\Delta\Delta G = 7.2 \text{ kCal/mol}$) is less than the sum of the $\Delta\Delta G$ values for [Ala¹¹]NT(8-13) and [Ala¹³]NT(8-13)(10.5 kCal/mol). This indicates that there is some synergy between the binding interactions of these two side-chains.

This is the first systematic study which quantifies the importance of each amino acid side-chain in the peptide-neurotensin receptor binding interaction. Our results are in agreement with previous reports which have demonstrated the importance of Tyr¹¹ [13], and Leu¹³ [11,12].

Acknowledgement

We thank Dr Giles Ratcliffe for helpful discussions.

References

- 1. Carraway, R.E. and Leeman, S.E. J. Biol. Chem., 1973, 248, 6854-6861.
- 2. Leeman, S.E. and Carraway, R.E. Ann. NY Acad. Sci., 1982, 400, 1-16.
- Martinez, J. in <u>Comp. Med. Chem.</u>; Emmett, J., Ed.; Pergamon Press: Oxford, 1990, Vol 3, Ch. 13.6, 925-959.
- 4. Kasckow, J. and Nemeroff, C.B., Regul. Pept. 1991, 36, 153-164.
- Land, T.; Langel, U.; Low, M.; Berthold, M.; Unden, A.; Bartfai, T. <u>Int. J. Pept. Protein Res.</u>
 1991, 38, 267-272.
- Beck-Sickinger, A.G.; Gaida, W.; Schnorrenberg, G.; Lang, R.; Jung, G. Int. J. Pept. Protein Res. 1990, 36, 522-530.
- 7. Cunningham, B.C. and Wells, J. A. Science 1989, 244, 1081-1085.
- 8. Hebert, C.A.; Vitangcol, R.V.; Baker, J.B. J. Biol. Chem. 1991, 266, 18989-18994.
- Glass, D.B.; Cheng, H-C.; Mende-Mueller, L.; Reed, J.; Walsh, D.A. <u>J. Biol. Chem.</u> 1989, 264, 8802-8810.
- St-Pierre, S.; Lalonde, J-M.; Gendreau M.; Quirion, R.; Regoli, D.; Rioux, F. <u>J. Med. Chem.</u>
 1981, 24, 370-376.
- 11. Granier, C.; Van Rietschoten, J.; Kitabgi, P.; Poustis, C.; Freychet, P. <u>Eur. J. Biochem.</u> 1982, 124, 117-125.
- Kitabgi, P.; Poustis, C.; Granier, C.; Van Rietschoten, J.; Rivier, J.; Morgat, J-L.; Freychet,
 P. Mol. Pharmacol 1980, 18, 11-19.
- Al-Rodhan, N.R.F.; Richelson, E.; Gilbert, J.A.; McCormick, D.J.; Kanba, K.S.; Pfenning, M.A.; Nelson, A.; Larson, E.W.; Yaksh, T.L. <u>Brain Res.</u> 1991, 557, 227-235.
- 14. Kellis, J.T.; Nyberg, K.; Sali, D.; Fersht, A.R. Nature 1988, 333, 784.
- 15. Andrews, P.R.; Craik, D.J.; Martin, J.L. J. Med. Chem. 1984, 27, 1648-1657.